تحقیق تركيبات و نظريه‌ي گراف 18 ص

تحقیق تركيبات و نظريه‌ي گراف 18 ص - ‏1 ‏در اين مقاله مي خواهيم به دو مبحث بزرگ از رياضيات گسسته با نامهاي تركيبات و نظريه‌ي گراف بپردازيم كه در ...

کد فایل:17692
دسته بندی: دانش آموزی و دانشجویی » دانلود تحقیق
نوع فایل:تحقیق

تعداد مشاهده: 4772 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: .doc

تعداد صفحات: 27

حجم فایل:58 کیلوبایت

  پرداخت و دانلود  قیمت: 8,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.
0 0 گزارش
  • لینک دانلود و خرید پایین توضیحات
    دسته بندی : وورد
    نوع فایل :  word (..doc) ( قابل ويرايش و آماده پرينت )
    تعداد صفحه : 27 صفحه

     قسمتی از متن word (..doc) : 
     

    ‏1
    ‏در اين مقاله مي خواهيم به دو مبحث بزرگ از رياضيات گسسته با نامهاي تركيبات و نظريه‌ي گراف بپردازيم كه در اين دوران شاهد پيشرفت چشمگير آنها مي باشيم .
    ‏اين دو مبحث بدليل آنكه داراي كاربرد وسيعي در علم كامپيوتر و برنامه سازي هاي كامپيوتري مي‌باشند حائز اهميت فراوان مي باشند .
    ‏1-تركيبات :
    ‏شايد در نگاه اول تركيبات يك بخش معماگونه و سطحي از رياضيات به نظر برسد كه داراي كاربرد چنداني نبوده و فقط مفهوم هاي انتزاعي را معرفي مي كند ولي اين شاخه از رياضيات داراي گستره‌ي وسيع بوده و داراي شاخه هاي زيادي نيز مي باشد .‏
    ‏ابتدا به مسأله اي زيبا از تركيبات براي آشنا شدن بيشتر با اين مبحث ارائه مي كنيم .
    ‏سوال : يك اتاقي مشبك شده به طول 8 و عرض 8 داريم كه خانه‌ي بالا سمت چپ و خانه‌ي پايين سمت راست‌ آن حذف شده است (مانند شكل زير)
    ‏3
    ‏حال ما دو نوع موزاييك داريم . يكي 2*1 ( ) و ديگري 1×2 ( ) سوال اين است كه آيا مي توان اين اتاق را با اين دو نوع موزائيك فرش كرد .
    ‏احتمالاً اگر شخص آشنايي با تركيبات نداشته باشد مي گويد «آري» و سعي مي كند با كوشش و
    ‏خطا اتاق را فرش كند ولي اين كار شدني نيست ؟! و اثبات جالبي نيز دارد .
    ‏اثبات : جدول را بصورت شطرنجي رنگ مي كنيم مانند شكل زير :
    ‏حال با كمي دقت متوجه مي شويم كه هر موزائيك يك خانه از خانه هاي سياه و يك خانه از خانه‌هاي سفيد را مي پوشاند يعني اگر قرار باشد كه بتوان با استفاده از اين موزائيك ها جدول پوشانده شود بايد تعداد خانه هاي سياه با تعداد خانه هاي سفيد برابر باشد ولي اين گونه نيست زيرا تعداد خانه هاي سفيد جدول برابر 32 و تعداد خانه هاي سياه برابر 30 مي باشد . در نتيجه اين كار امكان امكان پذير نيست .
    ‏3
    ‏اين مسأله مربوط به مسائل رنگ آميزي در تركيبات بوده كه داراي دامنه‌ي وسيعي از مسائل دشوار و پيچيده مي باشد در زير چند نمونه از مسائل آسان و سخت را بيان مي كنيم .
    ‏1-ثابت‌كنيد هيچ جدولي را نمي توان به موزائيك هايي به شكل و پوشاند .
    ‏(راهنمايي: ثابت كنيد حتي سطر اول جدول را هم نمي توان پوشاند)
    ‏2-ثابت كنيد يك مهره‌ي اسب نمي تواند از يك خانه‌ي دلخواه صفحه‌ي n‏*4 شروع به حركت كند و تمام خانه ها را طي كند .
    ‏3-يك شبكه‌ي n‏*m‏ از نقاط داريم يك مسير فراگير مسيري است كه از خانه‌ي بالا سمت چپ
    ‏4
    ‏شروع به حركت كرده و از همه‌ي خانه هر كدام دقيقاً يك بار عبور كند و به خانه‌ي سمت راست پايين برود ثابت كنيد شرط لازم و كافي براي وجود يك مسير فراگير در شبكه‌ي n‏*m‏ آن است كه لااقل يكي از m‏ يا n‏ فرد باشد (مرحله‌ي دوم المپياد كامپيوتر ايران) در شكل زير يك مسير فراگير را براي جدول 5*4 مي بينيم .
    A

    ‏ B
    ‏4-ثابت كنيد شرط لازم كافي براي پوشش جدول n‏*m‏ با موزائيك هاي 2*1 يا 1*2 آن است كه يا m‏ يا n‏ زوج باشند .
    ‏حال مي‌خواهيم يك مبحث مهم از تركيبات به نام استقراء را معرفي كنيم.
    ‏استقراء بعني رسيدن ازجزء به كل و هم ارز است با اصل خوشترتيبي زير مجموعه‌ها( اصل خوشتربيني بيان مي‌كند كه هر مجموعه متناهي از اعداد عضوي به نام كوچكترين عضو دارد).
    ‏براي اثبات حكمي به كمك استقراء لازم است:

     



    برچسب ها: تحقیق تركيبات و نظريه‌ي گراف 18 ص تركيبات و نظريه‌ي گراف 18 ص دانلود تحقیق تركيبات و نظريه‌ي گراف 18 ص تركيبات نظريه‌ي گراف تحقیق تركيبات نظريه‌ي گراف
  • سوالات خود را درباره این فایل پرسیده، یا نظرات خود را جهت درج و نمایش بیان کنید.

  

به ما اعتماد کنید

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد ساماندهی پایگاههای اینترنتی ثبت شده است.

درباره ما

تمام حقوق اين سايت محفوظ است. کپي برداري پيگرد قانوني دارد.

دیجیتال مارکتینگ   ثبت آگهی رایگان   ظروف مسی زنجان   خرید ساعت هوشمند