لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 41 صفحه
قسمتی از متن word (..doc) :
1
سپيده دم رياضيات جديد
لگاريتم:
همچنانكه امروزه مي دانيم قدرت لگاريتم به عنوان يك ابزار محاسباتي در اين حقيقت نهفته است كه ضرب و تقسيم به كمك آن به اعمال ساده تر جمع و تفريق تحويل مي شوند.
نشانه اي از اين ايده در فرمول كه در زمان نپر كاملاً شناخته شده بوده پيدا شد و كاملاً محتمل است كه خط فكري نپر با اين فرمول شروع شده است چه در غير اين صورت تعيين محدود كردن لگاريتمها به لگاريتم سينوس زوايا توسط وي مشكل است. نپر حداقل به مدت 20 سال بر روي نظرية خودكار كار كرد و منشاء انديشة هر چه باشد، تعريف نهايي او از لگاريتم چنين است پاره خطي مانند AB و نيمه خطي مانند DE، به صورتي كه در شكل 1 نشان داده شده در نظر بگيريد.
فرض كنيد كه نقاط F,C همزمان بترتيب از نقاط B,A در امتداد اين خطوط با سرعت ادامة واحدي شروع به حركت نمايند. فرض كنيد C با سرعتي كه از نظر عدد برابر با فاصلة CB است حركت كند و سرعت حركت F يكنواخت باشد در اين صورت نپر DF را به عنوان لگاريتم CB تعريف مي كند يعني، با قراردادن CB=y , DF=x.
A
C
B
X
F
y
شكل 1
X=Naplogy
براي احتراز از مزاحمت كسرها نپر طول AB را به اختيار كرد زيرا بهترين جداول سينوسي كه در دسترس وي بود تا هفت رقم اعشار بسط پيدا مي كردند. از تعريف نپر
2
سپيده دم رياضيات جديد
و از طريق استفاده از معلوماتي كه در دسترس نپر نبود چنين نتيجه مي شود كه
لذا اين بيان مكرر گفته شده كه لگاريتمهاي نپري لگاريتم هاي طبيعي هستند در واقع بي اساس است. مشاهده مي شود كه لگاريتم نپري با افزايش عدد، كاهش مي يابد. بر خلاف آنچه در مورد لگاريتم هاي طبيعي اتفاق مي افتد بعلاوه آشكار مي شود كه، در دوره هاي مساوي متوالي از زمان، y مطابق يك تصاعد هندسي كاهش پيدا مي كند در حالي كه x مطابق يك تصاعد حسابي افزايش مي يابد.
بنابراين، اصل بيناني دستگاه لگاريتم ها يعني ارتباط بن يك تصاعد هندسي و يك تصاعد حسابي را داريم حال، براي مثال نتيجه مي شود كه اگر آنگاه:
Naploga –Naplogb=Naplogc-Naplgd
كه يكي از نتايج متعددي است كه به وسيله ي نپر برقرار شده است.
نپر بحث خود درباري لگاريتم ها را رد 1413 در رساله اي تحت عنوان شرح قانون شگف انگيز لگاريتم ها منتشر كرد. اين اثر حاوي جدولي است كه لگاريتم سينوس زوايا را براي دقيقه هاي متوالي يك كمان مي دهد رساله شرح علاقه فوري و گسترده اي را بر انگيخت و در سال بعد از انتشار آن هنري بريگز (1561-1631) استاده هندسه در كالج گرشام در لندن و بعداً استاد در آكسفورد به ادينبورو سفر كرد تا مراتب احترام خود را به مخترع كبير لگاريتم ها ادامه كند. در ضمن اين ملاقات بود كه نپر و بريگنير به اين توافق رسيدند كه جداوال در چنان تبديل كه لگاريتم 1 ماه و لگاريتم 10 هر توان مناسبي از 10 مي شود مفيدتر خواهد بود بدين ترتيب لگاريتم امروزي بريگزي يا متعارفي تكوين يافت اين گونه لگاريتم ها، كه اساساً لگاريتم هاي در مبناي 10 مي باشند كارآيي برتر خود را در محاسبات عددي مرهون اين حقيقت هستند كه دستگاه شمار مانيز در مبناي 10 است. براي دستگاه شماري كه پايه ديگري مانند
3
سپيده دم رياضيات جديد
b داشته باشد، البته، به منظور محاسبات عددي مناسبتر خواهد بود كه جداول لگاريتم نيز در مبناي b باشند.
بريگز همه ي توان خود را در راه ساختن جدولي بر پاية طرح جديد وقف كرد و در 1624 حساب لگاريتم خود را كه شامل يك جدول 14 رقمي از اعداد از 1 تا 20000 و از 90000 تا 100000 بود منتشر كرد. مشكاف از 20000 تا 50000 بعداً به كمك آدريان ولاك (1600-1666) كتاب فروش و ناشر هلندي پر شد در 1620 ادمونه گانته (1581-1626) يكي از همكاران بريگز، يك جدول هفت رقمي از لگاريتم هاي متعارفي سينوس و تانژانت زوايا براي فواصل قوسي يك دقيقه منتشر نمود. گانته بود كه واژه هاي كسينوس و كتانژانت را ابداع كرد، مهندسان وي را به خاطر «زنجير گانته» شناختند.
بريگز و ولاك چهار جدول بنيادي لگاريتم ها را منتشر نمودند كه تنها در همين اواخر وقتي، در بين 1924 و 1949 جداوال جامع 20 رقمي در انگلستان به عنوان جزئي از جشن سيصدمين سال كشف لگاريتم محاسبه شد كنار گذاشته شدند.
كلمة لگاريتم به معني «عدد نسبت» است و توسط نپر، بعد از آنكه بدواً از اصطلاح عدد ساختگي استفاده كرد اتخاذ گرديد. بريگز كلمه ي مانيتس را كه كلمه لاتيني از ريشه اتروسكي است، معمول كرد كه در اصل به معني «جمع» يا «پارسنگ» بوده و در ولاك به كار افت عجيب است كه در جدول اولية لگاريتم هاي متعارفي رسم اين بود كه مانيتس را نيز مانند مفسر چاپ كنند، و از قرن هجدهم به بعد هم بود كه رسم فعلي چاپ، مانتيسها به تنهايي، متداول گرديد.
اختراع شگفت انگيز پز بگرمي در سرتاسر اروپا مورد استقبال واقع شد. در نجوم بويژه زبان براي چنان اكتشافي بسيار آماده بود بنابه اظهار لاپلاس، اختراع لگاريتم ها «با كوتاه كردن زحمات، عمر منجمين را دو برابر كرد» بونانتوراكاواليري تلاش زيادي براي متداول نمودن لگاريتم ها در ايتاليا به عمل آورد. خدمت مشابهي را يوهان كپكر در آلمان و ادموند وينگبيت درفرانسه انجام دادند. و
5
سپيده دم رياضيات جديد
ينگيبت، كه سالها زيادي را در فرانسه گذارند به صورت برجسته ترين نويسنده انگليسي كتابهاي درسي در حساب مقدماتي درآمد.
تنها رقيب نپر در پيشقدمي در اختراع لگاريتم يوبت بورگي (1552-1632) ابزار ساز سويسي بود بورگي جدولي از لگاريتم هاي را مستقل از نپر به تصور درآورده و آنرا ساخت و نتايج كارهاي خود را در 1620 شش سال بعد از اينكه نپر كشف خود را به جهانيان اعلام كرده بود منتشر نمود. گر چه هر دوي آنان ايدة لگاريتم را مدتها قبل از انتشار در ذهن پروانده بود عموماً اعتقاد بر اين است كه اين ايده اول بار به ذهن نپر راه يافته بود. روش نپر هندسي بود در حالي كه روش بورگي جبري بود امروزه لگاريتم به عنوان يك نما تلقي مي شود مثلاً اگر را لگاريتم b گوييم. از اين تعريف، قوانين لگاريتم بلافاصله پيش از به كاربردن نماهات. در سال 1971 نيكاراكوئه يك سري تمبر پستي در اكرام از «ده تا از مهمترين فرمولهاي رياضي» دنيا منتشر نمود. طرح هر تمبر يك فرمول ويژه تاريخي همراه با يك تصوير است در پشت آن گفتار كوتاهي به زبان اسپانيايي در رابطه با اهميت اين فرمول آمده است. يكي از تمبرها به كشف لگاريتم به دت نپر اختصاص داده شده است. براي دانشمندان «رياضيدانان بايد اسباب خوشحالي باشد كه فرمولهاي خود را در اين گونه مورد بزرگداشت ببيند. زيرا اين فرمولها سهمي بس بيشتر از كارهاي شاهان و فرماندهان نظامي در پيشرفت بشريت داشته اند و تمبرهايي پستي اغلب سيماي اينان را در بر دارد.
سالها بود كه محاسبه لگارتيم در دروس رياضي اواخر دبيرستان يا اوايل كالج درس داده مي شود و همچنين طي سالها خط كش محاسبه لگاريتمي كه در قالب چرمي زيبايي از كمر آويخته مي شد. نشان تشخيص دانشجويان مهندسي دانشگاه ها بود. با اين حال، امروزه با ظهور ماشين حسابهاي جيبي كوچك جالب و با قيمت هاي رو به كاهش، كسي استفاده از جدول لگاريتم يا خط كش محاسبه را در محاسبات عاقلانه نخواهد داشت. تدريس لگاريتمي به عنوان يك ريشه محاسبه از مدارس رفت بر مي بندد، سازندگان مشهور خط كش ها محاسبه دقيق به قطع توليد پرداخته اند و كتابها
برچسب ها:
دانلود مقاله در مورد سپيده دم رياضيات جديد 38 ص سپيده دم رياضيات جديد 38 ص دانلود دانلود مقاله در مورد سپيده دم رياضيات جديد 38 ص سپيده رياضيات جديد دانلود مقاله مورد سپيده رياضيات جديد