لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 22 صفحه
قسمتی از متن word (..doc) :
قوانين ترموديناميک
قانون صفرم ترموديناميک
در زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و ... می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم.
قانون صفرم (Zeroth law)
برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن - درون ظرف بزرگتر - یکسان می شود. اینگونه بنظر می آید که میان دو منبع - منظور لیوان آب جوش و ظرف آب سرد - مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند.
مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی - بنام گرما - از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود.
این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.”
دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند.
قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود - و تلف خواهد شد - تا پتانسیل دو منبع یکسان شود.
علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.
قانون صفرم ترموديناميک بيان ميکند که اگر دو سيستم با سيستم سومي در حال تعادل گرمايي باشند، با يکديگر در حال تعادلند.
قانون اول ترموديناميک
در زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و ... می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم.
قانون صفرم (Zeroth law)
برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن - درون ظرف بزرگتر - یکسان می شود. اینگونه بنظر می آید که میان دو منبع - منظور لیوان آب جوش و ظرف آب سرد - مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند.
مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی - بنام گرما - از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود.
این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر
A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.”
دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند.
قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود - و تلف خواهد شد - تا پتانسیل دو منبع یکسان شود.
علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.
قانون اول ترموديناميک که به عنوان قانون بقاي کار و انرژي نيز شناخته ميشود، ميگويد که حالت تعادل ماکروسکوپي يک سيستم با کميتي به نام انرژي دروني (U) بيان ميشود. انرژي دروني داراي خاصيتي است که براي يک سيستم منزوي (ايزوله) داريم:
U=مقدار ثابت
اگر به سيستم اجازه? برهمکنش با محيط داده شود، سيستم از حالت ماکروسکوپي اوليه? خود به حالت ماکروسکوپي ديگري منتقل ميشود که تغيير انرژي دروني را براي اين تحول (فرآيند) ميتوان به شکل زير نشان داد:
?U = Q ? W
که در اين فرمول W، کار ماکروسکوپي انجام شده توسط سيستم در برابر نيروي خارجي و Q مقدار گرماي جذب شده توسط سيستم در طي اين فرآيند است.
نمادگذاري
شميي و فيزيک
چون در شيمي و فيزيک سيستم مورد توجه است، گرما و کاري که به سيمتم داده ميشود مورد نظر ماست و انرژي دروني را Q+W در نظر ميگيريم.(سيستم را بسته,در حالت سکون و در غياب ميداانها در نظر ميگيريم)
,
where
dU يک افزايش بياندازه کوچک در انرژي دروني سيستم است.,
?Q يک مقدار بياندازه کوچک از گرما که به سيستم افزوده ميشود,
?W يک کار بياندازه کوچک که بر روي سيستم انجام ميشود و
? نماد ديفرانسيل است.
قوانین فیزیک چه محدودیتهایی بر عملکرد ماشین های بخار و سایر ماشین های تولید کننده انرژی مکانیکی تحمیل میکنند. ترمودینامیک درباره تبدیل یک شکل انرژی به شکلی دیگر، به ویژه تبدیل گرما به سایر شکلهای انرژی بحث میکند. این کار با مطالعه روابط بین پارامترهای صرفا ماکروسکوپی صورت میگیرد که رفتار سیستمهای فیزیکی را توصیف میکنند. این گونه توصیف ماکروسکوپی (و در مقیاس بزرگ)، لزوما تا حدی خام است، چرا که همه جزئیات کوچک مقیاس و میکروسکوپی را نادیده میگیرد. اما در کاربردهای عملی، این جزئیات اغلب مهم نیستند. برای مثال، مهندسی که رفتارهای گازهای حاصل از احتراق را در سیلندر یک موتور اتومبیل بررسی میکند میتواند با کمیتهای ماکروسکوپی همچون دما، فشار، چگالی و ظرفیت حرارتی کار خود را پیش ببرد.
در واقع دانشمندان به دنبال یافتن پاسخ این پرسش بودند که آیا میتوان ماشینی به طور دائمی کار مکانیکی انجام دهد. آنها مدتها بر روی این موضوع تحقیق کردند و تعدادی از محققین نیز طرحهایی برای این کار پیشنهاد نمودند. شکل زیر یکی از این طرحها را نشان میدهد. هدف این بود که ابزار ساخته شده بدون مصرف هیچ گونه سوخت یا هر گونه انرژی ورودی دیگر، کار خروجی بی پایانی را تامین کند. در شکل میله های کوتاه لولا شده، که به میخها تکیه دارند، وزنهها را به چرخ متصل میکنند. وقتی میلهها در وضعیت نشان داده شده هستند، عدم توازنی در توزیع وزن وجود دارد که موجب ایجاد یک گشتاور ساعتگرد خواهد شد که چرخ را در جهت نشان داده شده میچرخاند. طراح میپنداشت این گشتاور همیشگی است و نه تنها چرخش چرخ را حفظ میکند، بلکه به طور دائمی به محور آن انرژی میدهد. اما آنچه در عمل اتفاق میافتد اینست که پس از یک دور چرخیدن، جرمها در یک وضعیت متعادل باقی میمانند و حرکت متوقف میشود.
در این راه کوششهای فراوانی صورت گرفت؛ در شکلهای زیر میتوانید نمونه هایی از طرحهای پیشنهادی را ببینید.
برچسب ها:
دانلود مقاله در مورد قوانين ترموديناميک قوانين ترموديناميک دانلود دانلود مقاله در مورد قوانين ترموديناميک قوانين ترموديناميک دانلود مقاله مورد قوانين ترموديناميک